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SOME COM4ENTS ON THE TIME-CAUSAL CHARACTERISTICS

OF LEAKY AND SURFACE WAVES

L. Lewin

Introduction

An excellent exposition of the nature and properties of leaky waves has

been given by Hesse , including an extensive bibliography to which the

interested reader is referred. As is now well-known, the field increases

exponentially in the transverse plane at the same time that it attenuates

axially. There is a certain angle, known as the critical angle, which

defines a critical cone within which the radiation condition is satisfied.

Outside the critical cone the field would increase on all directions, and

it is clear that the leaky wave, in isolation, cannot exist as a realistic

entity. Nevertheless it is a convenient abstraction with considerable use

in leaky-wave antenna design. From a practical point of view we can

distinguish three regions: a) very close to the source, where near-fields

predominate, b) an intermediate region in which, close to the guiding

structure, the field is predominately given by the leaky wave, and c) very

far from the source, where the leaky wave has been exponentially attenuated

so much that the source radiation (as modified by the presence of the

guiding structure), with its inverse distance variation, dominates. On the

critical cone the leaky wave merges with the source-radiation and a clear

distinction between them cannot be made. Outside the critical cone the

actual radiation is that from the source, though the leaky wave, as a

mathematical idealization, would, of course, completely dominate. A like set
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of three axial regions can be distinguished in an open lossy transmission

line, like microstrip.

Somewhat different conditions prevail for the fields of a lossy

dielectric-coated line, such as the Goubau line (2) The wave is a slow

wave, and in the absence of losses the field is radially attenuated. But

to provide the energy absorbed in the lossy case the radial characteristics

also involve an incoming radial wave feature, apparently in contravention

of radiation requirements of outgoing waves at infinity. In a discussion

of this aspect it was indicated that the problem arose only because the

surface wave was considered in isolation. If the radiation from the source

is taken into account the surface wave merges away from the line with the

source radiation, which takes over and is out-going sufficiently far from

the line. Although there is no critical cone in this case the situation

is not unlike that of the leaky wave in that the surface wave merges with

the source radiation, which takes over at large distances and satisfies

the radiation condition at infinity.

The question of whether a leaky wave is a "genuine" mode of a system

is in part a semantic one. Obviously it can exist only in a limited space

region because of the radiation condition at infinity. But one can also

ask whether it is physically real in another sense - does it satisfy time-

causal conditions? If a wave is switched on, does the leaky-wave component

appear with a time-transient within the light-cone, or is there a precursor

outside the light cone? In either case, can this be discerned from the

propagating properties only of the wave? Do the space-varying characteristics

imply also the -time-characteristics? One would suspect so, though no such

S..relationship appears to have been reported. The problem is complicated by

. a further feature of the leaky wave; its characteristics are frequency-

.qj
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dependent. In particular the critical angle approaches zero at high

frequencies. Since all frequencies are developed when switching on there

is a real problem in sorting out what constitutes the leaky mode during

the initial period. As already mentioned, the leaky mode cannot exist

in isolation and relating it to a source is essential.

In the present study the matter is examined from the point of view of

a realistic system. A source and surface-wave structure is examined first

under harmonic excitation, and the surface wave component is extracted by

inspection following a contour deformation valid within the critical cone.

This is sufficient to enable the surface wave to be recognized and its

amplitude, as a function of frequency, to be determined in relation to the

excitation. A Fourier-time analysis, on the surface-wave component only,

is performed and the transient/precursor properties extracted.

It is found that both the leaky-wave and the Goubau-wave, in the

example treated, are accompanied by a precursor outside the light-cone,

so these waves, in isolation, do not satisfy the time-causal relation.

What the significance of this may be is outside the scope of the present

study. It does appear, however, that this is possibly a general property,

- and somehow might be deducible more directly for any mode not satisfying

the radiation conditions, without having to make reference to a particular

source problem.

* 1. Surface Wave Generation

In order to provide a realistic generation process, we consider a

symmetrical center-fed cylindrical antenna of infinite length with a

suitable surface impedance loading. The generator is located over a short

distance 26 , where 6 can be taken later to zero since no divergencies

A
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arise from using a 6-function generator in this problem. The arrangement

is shown in figure 1 and we define

ko = 27/X o  wo/c (free space propagation consant)

k - 2w/X (medium propagation constant, differing from k0 by

possessing a small loss-factor. We can put k = 0o1r with

e 1 in the limit of no loss)

w - angular frequency of the wave.

Co Z (Po /C 0) (impedance of free space)

C = (Po/ ) o o/r (impedance of the medium)

c = (VoC )- (light velocity in vacuum)

Zs = surface impedance of the cylindrical surface.

For an inductive surface, Zs should vary proportional to wo and for a

capacitive surface inversely proportional thereto. Thus, using 4o for

normalization, we take

Z. = JkooL (inductive surface) (1)

Z= -jro/koC (capacitive surface) (2)

L and C are frequency-independent parameters that determine the strength

of the loading; they have the dimensions of length. Loading with inductance

gives rise to a leaky wave whilst capacitive loading leads to a Goubau wave.

We shall examine first the properties for excitation by a time

harmonic wave with time vector e +j . The electric field component E~Z

can be taken as a Fourier integral of elementary cylindrical waves in the

following form to satisfy the radiation condition as p :
E ((

&0
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The variable a is real, F(q) is to be determined, and B is given by

8 (k2-a2) -jill for jai>> kl (4)

There are branch-points at a = ±k, and the integration contour is shown in

figure 2.

The above form ensures that the radiation condition is satisfied for

large p

At p = a, the wire radius, we need

Ez + ZsH0 0 0zI > 6
(s)

= -V /26 , IzI < 6

0

The voltage V°  of the generator is arbitrary, and it is convenient to
0*

give it the value -2wr/jk to avoid unwanted constant factors later on.*

The form of H follows from Maxwell's equationsand is
0

H0 = (k/)J a-H1I (0p)e-Ja F(a)d (6)
- D

Writing, for a moment, (1) and (2) in the more general form Zs = jo X,
5 0

the condition (5) can be written

-j.z (2 k (2)K 1OF(a)eJaIZ[H 0)(0a) -kX0 H 2 )($a)/C8]da = wz/jk iz < 6(

= 0, Izl > 6

The solution of this integral equation is

Actually the second equation should be written

Ez+ ZHe = -Vo/26 + (ZsHe)z=o IzI < 6 (Sa)

where it is assumed that the generator current, proportional to He) is
constant over the short range 0 < IzI < 6. However, this form only affects
the arbitrary constant multiplier that enters into the problem and is not
needed unless the field is to be referred to an actual generator. And in
such a case the effective value of Z at the generator surface would also need
to be known. The effect of the additional term on the right of (Sa) becomes
negligible as 6 * 0 so that (10) is in any case correct for a 6-function generator.

K> I I I |1I
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F (q) H Cj21~ (a) - MC HM (Ba)/ a] = e a z da C /jk6)
0 0 1 ~ rf -6(8 )

= (C/jk) sin oW
a6

Substituting into (6) gives

O (2) -jaz sin c .H1 (lp e a a6 )e

H n J 0) ($a) - (k 2 X/k 0)H I ($a)()

Convergence of this integral does not require the presence of the factor

sin a6/a6 , so it is convenient at this point to take 6 = 0 and (9)

simplifies to

H f-H (2 ) (0p)e- jaz da 10
H=f .. . .(10)

$H. H(2 ) (0a) - (k 2X/ko)H (2 ) ($a)

-OD 00

We shall work with this form in the rest of this study. It gives the

magnetic field radiated from and guided along a 6-function-fed, symmetrical,

cylindrical, surface-impedance structure.

2. Surface Wave Component

If the denominator of the integrand in (10) is equated to zero, there

is found a root a = a which gives rise to a discrete wave conducted along

the antenna surface. By deforming the contour* as in figure 3 we obtain a

residue at the resulting pole of amount*I
H ()(surface wave)= HI" (0 p)e

0 2nj Residue [$ 2)i 2Ca)H f1 a

8(surfa(2ceJO 10 [8z (a)C2k)HI2(af

(-2wj o/a )H" 2 (3 p)e ZIH () (l-p)-H 2 ( ) (-P/0)]-0, 0- 0 "l

The deformation is permissible only within the critical cone for the

leaky wave: this is sufficient to locate uniquely the leaky wave component.
It is assumed that z> 0; results for z< 0 are obtained by replacing z

* "by -z, because of the symmetry.
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where

60 2 a2k

4 a
0

p = k2Xa/k°

Of course, (11) does not represent the major part of the field except in the

region where the surface wave dominates. As discussed earlier, for z large

enough the surface wave is attenuated to a value smaller than the direct source

radiation so that in that region the remaining integration along the branch

cut represents this radiated field. But in the region where it is significant,

(11) represents the surface wave, with amplitude given by the residue

expression. It involves a surface impedance parameter p, and in view of

the presence of the factor ka we can assume that this parameter is small,

at least for small wire radius and light loading.

The pole location co is given, via 0 = Boa, as a root of the equation
0!

EH( 2 ) (4) = pH(2 ) () (12)0 1

An approximate value of 4 for small p can be found by arguing as follows:

the equation cannot possess a root for large 4 since H(2)(E) -jH( 2 () Qfor
1 0

>41 > > 1. For 4 = 0(1) the right hand side is 0(p) whilst the left-hand side

(2))
.. is 0(l). Hence any root must occur for small C. Since H 2()varies as

1/E for small 4 whilst H (2)() is logarithmic, a value of E very
0

approximately of order pi must exist. By expanding the Hankel functions

for small 4 we get the approximate equation

E 2 [jlr+2y+2log(V/2)](l-p/2) * -2p (13)

Lt

' , " -
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For p small and positive (13) possesses a root close to

= (14)

This expression possesses a positive imaginary part, so that the exponential

(2) -j&op/a
factor in H (0 p), i.e. e is increasing with p; a known

property of a leaky wave on an inductive surface. For p small and

negative (Icapacitive loading) the value of C is

&= _j r2y (1S)
Lo(-2/p) (i

This gives the expected radial attenuation of a Goubau surface wave

over a capacitive surface. If the capacitive loading is slightly lossy,

say due to the use of a dielectric with loss tangent 6, (15) becomes

Co JL logJ-2/2 -_2y+j e j6/2 (16)

The effect of the loss is to give a small negative real part to COO

and since the asymptotic form of the Hankel function in (11) involves

exp[-j op/a] the loss gives rise to an incoming radial component to the

wave, a well-known property of the Goubau wave.

It should be stressed that the approximations (14) and (1S) can be

used only if p is small enough; otherwise resort must be had to the basic

equation (12). However, the only use made here of these relations is to

note that there is indeed one root existing when p is small - the exact

value is of no special consequence. (When p is large the only root is

jp; although the properties of (12) in the whole complex plane have

not been thoroughly explored it would appear that there is one, and only

one, root existing for all relevant values of p.)

iv
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3. Time-Causal Properties: Leaky Wave

A wave of angular frequency w switched on from zero to unit amplitude
0

at t 0 0 can be expressed by

f(t)=- Lin ra dw (17)&'0+- 0'oj  d.(7

The effect of the small positive quantity A is to place the pole at

w o jA just above the real axis. For t > 0 convergence of the

integrand permits the contour to be closed by the semi-circle at infinity

in the upper half of the complex w-plane, giving a single residue at
iwot

W Uo + jA , resulting in f(t) = e as A - 0. Similarly, for

t < 0 the semi-circle needs to be in the lower half-plane for convergence.

There is no pole there, so f(t) = 0 for t < 0. Clearly poles in the

upper half-plane are associated with realistic transients or oscillations,

whilst singularities in the lower half-plane would be associated with non-

causal precursors. It is our aim to use (17) in conjunction with (11) to

see where (11) - taken in isolation - exhibits singularities in the complex

w-plane, and hence to determine the causal properties of the leaky or

surface waves. To do this it is necessary to restore the missing time
Jwot

vector e in (11), replace wo by w everywhere, and then apply

to it the integral operator of (17), i.e ,-Lim 00 ,fdW

A *0 Go o

* (Note that w is contained implicitly in (11) through ko - w/c.)
(
* The effect is that of an isolated leaky-wave of angular frequency w0

switched on at t - 0. It follows that the singularities of (11), qua w,

determine the time-causal properties of the leaky wave. In particular,

any singularities in Im w < 0 will give rise to non-causal properties.

*. - [

1;
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In order to determine the general nature of these properties, it is

not necessary to carry out the indicated integrations; it is sufficient to

locate the singularities of (11). Clearly there are three possible

locations to be examined; they are at i) 00 a 0 where the Hankel functions

exhibit a branch-point, ii) ao 0 0, where (11) exhibits a pole, and iii)

at roots of H( 2 ) ()(l-p) - H (2 )( )(C-p/C) . We shall examine these roots

in turn, bearing in mind that they must also satisfy (12), which locates

the pole giving rise to the wave. In other words we have sets of two

equations to be solved simultaneously, (12) in conjunction with each of the

three preceding conditions in turn.

1). 0o = O. Since, by definition, =oa and a 0 0, 0o = 0 requires

= 0, and this is not compatible with (12). Hence the position 00 = 0 does

not give an acceptable location of a singularity in the w-plane.

2). 0 = 0. From the definition of 0o in terms of ao this condition leads

to = ka and (12) becomes, on using (1) for Z

H(2) (ka) = kLH( 2 ) (ka) (18)

If we put k = w/c (the distinction between k and k is of no relevance

here), andw= -jo the equation reduces to

K0 ( Oa/c) = (OL/c)K 1 (Oa/c) (19)

Now as *P-0, K + whilst OK is finite. Hence the left-hand side of
.40 1

(19) exceeds the right-hand side for small . As * both K and K1

go to zero, but their ratio - 1. Due to the presence of the factor ,

*,' the right-hand side exceeds the left for large * . Both functions in (19)

are monotonic. Therefore there is one, and only one, real, positive value

of 0 which satisfies the equation. (It is not known for certain whether
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there are additional complex values. However, for k large the

asymptotic relation H (ka) - jH2(ka) leads to the single root

W - -jc/L, and there is similarly only a single root, found from the small

O •argument expansions, when k is small. It therefore seems very likely

that there is indeed only the one root. But the presence of further roots

would not alter the subsequent conclusions).

3). H(2) (C)(I-p)= H1 () (QC-p/ ) This has to be solved simultaneously0 1()lp=H2 (
with (12), i.e. H(21) pHi '12)(&), with p = k2La. Eliminating the

2 2Hankel functions from this pair of equations gives 2 = 2p-p or

p = I - (1-&2) . Substituting into (12) gives

CHo21 ( ) = [1 - (1- 2 ) ]Hl(2)(C) (20)

If we put C = -jn the equation takes the form

K1 (n) = Ko h) [(i+n2)2 + l]/n (21)

The only root of this equation appears to be at n = , where the two

sides become asymptotically equal. There is no real root, and apparently

no complex root either, although without an exhaustive search it is

jdifficult to be quite certain. However a finite root of (21), if it should

exist, will not affect subsequent conclusions.

The time-causal properties are determined by the existence of a root

coming from ao = 0. This gives A = -jO with 0 real and positive, and
0

determined by (19). Since this root is in the region l w < 0 it gives

rise to a time precursor varying as e'(t-P/c) for t <p/c. The meaning

of this conclusion is discussed further in section 5.

11
-.,
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4. Time-Causal Properties: Goubau Surface-Wave

The analysis proceeds almost exactly as in section 3 except that

k L is replaced by -1/koC. Instead of C18) we get

KHM(ka) - -erH C2)( ka) (22)

in which Fr can now be replaced by l and k by ko .

Writing w = k0c a -j, the equation reduces to

*Ko 4(a/c) = (c/C)K 1 (a/c) (23)

For * small the left-hand side is less than the right, whilst the opposite
is the case for * large. Both sides are monotonic, and there is therefore

one real root for * . Since w = -j we again see that there is a non-

causal precursor, exactly as in the leaky wave case. Only the value of *
is different.

The consideration of a possible further root follows the identical

analysis of section 3, since (20) is not affected by the change, though the

related value of p is different. Accordingly we find that the Goubau

wave behaves quite similarly to the leaky wave in its time-causal

characteristics.

S. Discussion and Conclusions

Both the leaky wave and the Goubau surface wave, taken in isolation,

i.e. without consideration of other fields that would be present when

-. *'generated by a finite source, appear to contravene the radiation condition

at infinity; the former because of its increasing fields outside the

critical cone, and the latter because of its incoming character to supply

the power lost on the guiding structure. It can therefore be asked in

'I
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what sense these modes are genuine ones. The present study shows that,

in the particular source example considered, they are non-causal. Is

this a general property or one predicated on the particular feed system

used? If it is a general one, then it would be expected that it could

be deduced from other considerations, e.g. the form taken by the propagation

factors. But apart from not satisfying the radiation conditions these

factors do not seen to demand any particular time structure, though it may

be speculated that there is a connection. However, the present method

indicates one feature that may be of a general character. The non-causal

nature comes from the pole at a,= 0, the presence of the latter arising

from a differentiation of 8, since aB/3ac = -(1/0 . The 8 appears here

from the radial term via H( 2 ) (0a), and since the source matching always0

occurs at some value or values of p, a boundary condition involving B

seems inevitable. Hence we would always expect a pole at % = 0, whatever

other features might be in evidence. This pole leads to a space variation

from H (2 ) (0p) e -jaz of e/jkp / for large p, all z. In the present0

example this term is damped for large p, when w = -jO. If it is physically

meaningful to require that this term always be damped then we require

- k x e-jgwith O< p< r . This leads to a pole for w in the lower-half plane,

and hence to a precursor varying as e (t'-P/c) for t< P/c, i.e., outside

the usual light cone. This result might possibly be related to the

-t/Tradiation condition in the following way. A decaying pulse e can be

LI -I represented by a real spectrum via the equation

et/T f cos wt dw (24)
I,. W 2T  2 ..

Since the fields of the leaky wave increase exponentially in the radial

direction for real frequencies the relation (24) would indicate a similar

property of a decaying pulse. The corresponding angular frequency in complex

K
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notation would be positive imaginary, or k e+j , w = r/2, To get a

physically meaningful decaying radial field it would be necessary to

reverse the sign of *, leading to the criterion hypothesized above.

The conclusion to be drawn from this somewhat speculative assessment

is that isolated surface modes of an open system are not time-causal.

The total. field, of course, is time-causal, and this throws some doubt on

the validity of working with isolated surface modes, their utility in

antenna design notwithstanding.

It might be objected that in the above reasoning the location a = 0O

is always outside the critical cone, and therefore in a region of no

practical interest for the leaky wave. Neither is it encountered, for

real frequencies, with the (slow) Goubau wave. The trouble here is that

the structure of these waves is frequency-dependent. The Goubau wave

'extends to infinity at low frequencies whilst the leaky wave has a critical

angle of zero at high frequencies. Since all frequencies are generated by

switching on it becomes unclear how the transient characteristics at

initiation of a leaky wave in isolation should be interpreted. In practice,

of course, the total field bu'lds up in a sensible way and "as the dust

settles," the leaky wave aspect emerges in that region where the field can be

meaningfully interpreted in terms of it. It is only because of a wish to

deal with the isolated mode that the problem arises. One needs to know,

for example, whether a predicted mode is a genuine characteristic that

can be used for transmission of information, or is merely a mathematical

artifact with no real useful properties. It is hoped that the results of

this study may eventually throw some light on this.

Acknowledgments. The author wishes to express his thanks to David Chang for

helpful discussion on many of the points raised.
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Figure Captions

1. Antenna and Source

2. Contour in the a-. plane

3. Deformed contour in the at-plane.
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